2024欢迎访问##牡丹江LGT2000U-2K1智能数显表厂家
发布用户:yndlkj
发布时间:2024-12-31 22:51:03
2024欢迎访问##牡丹江LGT2000U-2K1智能数显表厂家
湖南盈能电力科技有限公司,专业仪器仪表及自动化控制设备等。电力电子元器件、高低压电器、电力金具、电线电缆技术研发;防雷装置检测;仪器仪表,研发;消防设备及器材、通讯终端设备;通用仪器仪表、电力电子元器件、高低压电器、电力金具、建筑材料、水暖器材、压力管道及配件、工业自动化设备销;自营和各类商品及技术的进出口。
的产品、的服务、的信誉,承蒙广大客户多年来对我公司的关注、支持和参与,才铸就了湖南盈能电力科技有限公司在电力、石油、化工、铁道、冶金、公用事业等诸多领域取得的辉煌业绩,希望在今后一如既往地得到贵单位的鼎力支持,共同创更加辉煌的明天!
在选择设备时,有人会建议消防员选择能够在第三增益模式下显示高达+1,1°C的极高温度范围的热像仪,但这并不一定是好主意。因为就当今的热成像技术而言,更高测量温度需要以牺牲图像质量为代价。所以,选择合适的测温范围很重要,比如FLIRK系列红外热像仪是专为消防员在工作中遇到的极端高温和浓烟环境设计的,其能在明亮的LCD上显示更清晰热图像,能够协助消防员轻松地穿过火灾并且出决策,FLIRK系列热像仪能够测量-2°C至+65°C之间的温度,对于消防员而言,图像质量意味着生与死的区别,所以FLIRK系列红外热像仪是消防员很不错的选择。
日前,红外热像仪已经应用在我们生活的方方面面,不仅能够帮助人们在生产、科研上出正确的决策,还让我们的生活丰富多彩起来。以下,我们通过菲力尔红外热像仪的镜头,窥探生活不为人知的另一面。1“这是菲力尔在华盛顿设的新总部公楼,一起来欣赏红外世界中,我们的新总部公室吧~”2“在火灾中,菲力尔热像仪是很不错的工具,他能帮消防员快速准确着火点,及时灭火,将损失降到。”3“如果没有菲力尔红外热像仪,谁能想到我这富丽堂皇的房间里,竟然有这么多潜在问题。
按照存储芯片MicroSD卡供电要求的范围:2.7V-3.6V;不允许超出此范围,否则,芯片在不稳定的电压下工作会有比较大的风险,甚至会对卡片的正常工作带来影响。首先需要考虑的是示波器的设置,究竟是否需要进行20MHZ的带宽限制?详细的使用环境如下图所示:如何去测试“高频关电源”噪声IPAD刚引出来的那个端口可以当电源的源端,而通过后端的外围模块后在末端进行测试的时候,电源通过了一段PCB走线,包括一些芯片回路,应该存在高频的噪声,如果采用20MHZ的带宽限制,实际上是将原本属于模块的噪声给滤掉了,为此,我们进行了对比测试进行验证:步,我先验证IPAD的供电端在工作时的输出,如下图:通过直接验证IPAD的输出口的电压,保证源端的供电是正常的;通过测试,我们发现在源端测量的电压值在3.4V(500MHZ带宽测量)左右,峰峰值29mV,是非常稳定的供电;可以排除源端供电的问题,接下来,我们直接在通过整个模块后在MicroSD卡的供电脚SDVCC对电压进行测量,如下图:当我们在图片上的点进行测试的时候,发现在高频关电源上有相当大的噪声,使得电压超出了规范要求的范围,值达到了3.814V,峰峰值达8mV;但当我们将示波器设置为20MHZ带宽的时候,高频关电源变的非常好,完全在供电要求的范围内;正如在本文头描述的,在本次高频关电源测试过程中,已经不是高频关电源纹波测量,而应该是噪声。
如果没有回路,必须借助辅助地极和测试线也可以测出它的接地电阻值。正确机按下钳表的POWER按钮后,钳表即处于机自检状态。待液晶屏上显示“OLΩ”后,自检状态结束。如钳表未能显示“OLΩ”,请按动钳表手柄,让钳口张合两次重新机。当按下POWER按钮后到液晶屏显示“OLΩ”的这段时间内(自检时间约1秒),钳表不可钳绕任何金属导体,不能翻转钳表,亦不可压按钳表的手柄和钳口,应使钳表处于自然闭合的静止状态。
程控测量放大器比测量放大器增加了模拟关及驱动电路。增益选择关Sl—S'l,S2—S'2,S3—S'3成对动作,每一时刻仅有一对关闭合,当改变数字量输入编码时,则可改变闭合的关号,选择不同的反馈电阻,相当于自动改变测量放大器中电位器R1的阻值,达到改变放大器增益的目的。下图为集成程控测量放大器电路芯片LH0084的内部电路原理图。一方面通过接线选择运算放大器A3的反馈电阻来确定放大器的基础放大倍数,另一方面通过控制模拟关实现放大倍数的自动控制。
控制被测能发出各种预期的报文。步骤2:打CANScope的报文界面和“总线负载率”界面,发送ID填入111H,DLC为0,发送次数为无限。分别调整重复次数,使总 。使用ID筛选的方式,对应观察被测DUT的应用数据是否间隔时间是否正常。为筛选出被测DUT发出的181H的ID,通过增量时间的方式观察是否有异常。步骤3:打CANScope的报文界面和“总线负载率”界面,发送ID填入7FFH,DLC为8,发送次数为无限。
我们都知道数字示波器的原理决定了波形观测必然存在死区时间,而死区时间的长短直接影响示波器捕获异常信号的能力。那么,现在用的示波器的死区时间具体是多少,怎么去计算呢,在下文揭。采样时间、死区时间和捕获时间数字示波器捕获信号的过程是典型的“采集--采集-”过程,如所示为数字示波器的采集原理,一个捕获周期由采样时间和(时间)死区时间组成,如所示。示波器采集原理图采样时间:是信号采样存储的过程。